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ABSTRACT

We are interested in collisional granular flows of dry materials in reduced gravity. Because
the particles interact through collisions, the energy of the particle velocity fluctuations plays an

important role in the physics. Here we focus on the separation of grains by properties - size, for
example - that is driven by spatial gradients in the fluctuation energy of the grains.

The segregation of grains by size is commonly observed in geophysical flows and
industrial processes. Segregation of flowing grains can also take place based on other properties,
e.g. shape, mass, friction, and coefficient of restitution. Many mechanisms may be responsible
for segregation; most of these are strongly influenced by gravity. Here, we outline a mechanism
that is independent of gravity. This mechanism may be important but is often obscured in
terrestrial grain flows. It is driven by gradients in fluctuation energy.

In microgravity, the separation of grains by property will proceed slowly enough to permit
flight observations to provide an unambiguous measurement of the transport coefficients associated
with the segregation. In this context, we are planning a microgravity shear cell experiment that
contains a mixture of two types of spherical grains. The grains will be driven to interact with two
different types of boundaries on either sides of the cell. The resulting separation will be observed
visually.

BACKGROUND

The size segregation of flowing or shaken grains is a commonly observed phenomenon in
industrial processes and in nature. In many industrial processes a homogeneous aggregate is
desired; in these, size segregation is undesirable. However, in the mining industry, segregation by
size is exploited in some crushing operations. When observing natural grain deposits, grain
segregation provides an indication of whether an aggregate of grains was deposited dry (larger
grains above) or under water (larger grains below).

In systems that do not involve much agitation of the grains, several mechanisms that
involve gravity have been identified as leading to such segregation. These include the preferential
downward percolation of smaller particles in relatively slow inclined shear flows (e.g. Savage and
Lun, 1988), the upward frictional ratcheting of large particles (e.g. Haff and Werner, 1986), and
the preferential filling of space beneath larger particles by smaller particles in a system that is
occasionally shaken (e.g. Rosato, Strandburg, Prinz and Swendsen, 1986, 1987).

In highly agitated flows there is a mechanism independent of gravity that is available to
drive separation. This is associated with spatial gradients in the energy of the velocity fluctuations
of the grains. Collisional interaction between and among different species of grains require that, in
general, spatial gradients of concentration exist to balance spatial gradients of the particle
fluctuation energy.

In sheared or vibrated collisonal systems, gravity also influences mixtures of different size
grains. Here, buoyant forces act to separate grains that differ in size and the local volume that they
displace. The competition between buoyancy and gradients in concentration and energy may then
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result in convection cells in which particles with different properties separate (e.g. Knight, Jaeger
and Nagel, 1993).

In reduced gravity, such convection is suppressed and attention can be focused on the
simpler balance between gradients in concentration and the gradients in fluctuation energy.
Reduced gravity also eliminates the possibility that a collisional flow will condense into a slower,
denser flow dominated by enduring contacts rather than by collisions.

Because collisions between grains inevitably dissipate energy, collisional granular shear
flows are usually of limited extent in the direction transverse to the flow. One consequence is that
shear flows are strongly influenced by their boundaries. Because grains, on average, slip relative
to boundaries, a bumpy or frictional boundary can provide energy to the velocity fluctuations.
However, because collisions between grains and the boundary dissipate fluctuation energy, there is
a competition between production and dissipation, :

In principle, it is possible to design the geometry of the boundary - for example, the size
and spacing of regular bumps - so that the boundary either produces or dissipates fluctuation
energy (e.g. Jenkins and Askari, 1993). This permits the control of the component of the spatial
gradient of the fluctuation energy that is normal to the boundary. The gradients in fluctuation
energy established by such boundaries may be exploited to drive the separation by size or other
properties in a binary mixture of spherical grains.

We note here that microgravity makes the visual observations possible by permitting us to
employ moderate rates of shear. On earth, the effects of gravity can be minimized by shearing so
rapidly that the particle pressure overwhelms gravity. However, in this event, separation take
place too rapidly for visual observation, buoyancy and/or condensation associated with the
centripetal acceleration must be accounted for, and the particles can be severely damaged.

Here we sketch the existing theory for collisional shear flows of binary mixtures of
smooth, nearly elastic spheres (Jenkins and Mancini, 1987, 1989) and introduce the numerical
simulations of the complete flow in the microgravity shear cell (Hopkins and Louge, 1991; Louge,
1994). The link between theory, simulations and experiments is provided by measurements of
collision parameters in the apparatus described by Foerster, Louge, Chang and Allia (1994).

THEORY

Rather than providing here an exhaustive description of the complete theory, we introduce
the governing equations for an unsteady, rectilinear shearing flow of a binary mixture of
frictionless spheres, in which the gradient of the mixture velocity is vertical. These equations
govern the time dependent response of an initially steady shearing flow to an increment in
boundary velocity. This example provides an indication of how unsteadiness and gravity influence
the theory for segregation.

In this case, the horizontal and vertical components of the balance of momentum for the
mixture as a whole may be written as

pu=Sand 0=-P'-pg,

where p is the mixture mass density, u is the horizontal component of the mixture velocity, S and
P are the mixture shear stress and pressure, g is the gravitational acceleration, and overdots and
primes indicate derivatives with respect to time and vertical coordinate, respectively. The shear
stress S is proportional to u' and the pressure P is proportional to the mixture fluctuation energy T.
The coefficients in these expressions are given by Jenkins and Mancini (1989) for frictionless
spheres as explicit, but extremely complicated, functions of the number densities, masses, radii,
and coefficients of restitution of the two types of spheres.
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Similarly, the balance of fluctuation energy for the mixture is

3/2pT=-Q +Su'-p7,

where Q is the flux of mixture fluctuation energy, and  is the rate of mixture dissipation of
fluctuation energy due to the inelasticity of the collisions. The flux of fluctuation energy is

proportional to T' and the rate of collisional dissipation  is proportional to T32. Jenkins and
Mancini (1989) again provide the explicit forms of the coefficients. The presence of the collisional
dissipation in the energy balance distinguishes the macroscopic system from its molecular
counterpart.

Time dependent segregation of the spheres is described by an expression related to an
approximate form of the difference between the balance of momentum for each species:

va -vp=-n2Dap (da + Kr T')/na ng,

where v and vp are the vertical components of the diffusion velocities, na and np the number
densities of the two species, n is their sum, Dag and K are, respectively, the coefficients of
ordinary and thermal diffusion, and dp is the vertical component of the diffusion force. It has the
form

dA=BA P'+CAT'+DAIXA'+EAIIB',

where the explicit forms for these and the diffusion coefficients are provided by Jenkins and
Mancini (1989). When v - vp is different from zero, segregation is taking place; when va - vB
vanishes, a steady balance between the gradients of fluctuation energy and gradients of species
number density is attained. Segregation is influenced by gravity through the presence of P’ in da.

Boundary conditions are obtained by calculating the collisional exchange of momentum and
energy at the boundary. An expression for the slip velocity of the mixture results from balancing
the sum of the collisional production of momentum with the mixture shear stress. The energy
balance at the wall equates the normal component of the flux of mixture fluctuation energy to the
working of the mixture shear stress less the sum of the species’ collisional dissipation. Mancini’s
(1986) derivation of boundary conditions for bumpy, frictionless boundaries will be extended to

include friction, and boundaries that produce fluctuation energy will be distinguished from
boundaries that dissipate it.

In Figure 1 we show concentration profiles of two phases in a steady, fully-developed flow
driven by the relative motion of identical, parallel, bumpy boundaries in the absence of gravity.
These were obtained by Mancini (1986) as numerical solutions of the governing equations and
boundary conditions for spheres of different diameters made of the same material. The boundary
spheres were of the same diameter as the spheres of phase B and were assumed to be affixed in an
hexagonal close-pack to two flat wall that were separated by a distance of 6.5 diameters of phase B
. The spheres of phase A had a diameter 0.7 that of phase B, the average concentration of both
species was taken to be 0.25, and the coefficients of restitution for all collisions were equal to 0.9.

The full line in the figure is the concentration profile for a single phase of species B.

COMPUTER SIMULATIONS

The computer simulations are carried out to guide the design of the microgravity shear cell
and inform the development of theory. The idea is to follow the dynamics of an ensemble of
spheres interacting with the boundaries and among themselves through individual impacts. The
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impacts are characterized by the three-parameter model that we establish for real spheres using the
experiment described later.

Particle simulations are extensively used to perform numerical granular flow experiments.
Chief among these simulations are the deformable particle simulations, in which the inter-particle
forces are modeled during every impact (Walton 1983; Walton and Braun, 1986; Walton, Braun,
Mallon and Cervelli, 1989) and the rigid particle simulations in which only the collisional impulses
are modeled (Campbell, 1982, 1989).

Unlike earth-bound granular flows, bounded shear flows under low gravity do not readily
condense into amorphous regions of negligible agitation. Without such condensation, the forces
are primarily impulsive. In this case, Hopkins and Louge (1991) describe an efficient al gorithm
that permits simulations involving up to a hundred thousand spheres on a workstation of relatively
modest size. ‘

In their algorithm, collisions occur when a sphere overlaps slightly with another sphere or
with the wall. The algorithm adjusts its time step periodically to ensure that the mean overlap is
kept below a negligible tolerance. In addition, a search grid is superimposed on the flow domain
to permit fast identification of near neighbors. Because this method makes it superfluous to
maintain a list of future impacts, its computing time is merely proportional to the number of

spheres N, unlike other algorithms that grow as N#nN or even N2, Figure 2 is an example of a
microgravity shear cell geometry that we contemplate.
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Figure 1. Concentration profiles of two species in the upper half of a shear flow driven by the
relative motion of identical, parallel, bumpy boundaries in the absence of gravity.
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Figure 2. Snapshot from a numerical simulation of a microgravity shear cell involving identical
boundary and interior spheres at an overall solid volume fraction of 30%. The inner boundary
moves in the direction shown. The size of interior spheres is reduced for clarity.
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